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abstract

Market Dynamics with Non-Homogeneous Poisson Processes

Preston Tanner Redd
Department of Mathematics, BYU

Master of Science

The Bertrand Duopoly model for demand in economics is a well-used model. Although
this model has important insights towards pricing strategy, it does not accurately depict true
market behaviors. In this paper, we will examine the advantages and disadvantages of the
current model and its assumptions.

We then take a whole new approach towards modeling this phenomena, using Poisson
processes to model the demand of goods. We will discuss why this is a better approach and
explain how we can extend this to better understand pricing strategies and market dynam-
ics. We then apply our findings to the newsvendor problem, a commonly used problem in
inventory management. Using non-homogeneous Poisson processes we explain how to find
an optimal pricing strategy and an optimal inventory level for the newsvendor problem.

In this paper we explain how to extend the newsvendor problem to a newsvendor duopoly
problem. Again we show how to find the optimal pricing strategies and inventory levels for
multiple goods in a market. Having found the optimal pricing strategy and inventory level, we
then examine the market dynamics in more details. We explore monopolistic and duopolis-
tic markets where the goods range from complements to substitutes and homogeneous to
differentiated goods. We discuss how to model the progression of the inventory probabilities
and then explain how to price inventory options.

Keywords: Poisson rates, inventory options, inventory management, dynamic pricing, opti-
mal inventory, newsvendor problem
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Chapter 1. Introduction

Currently the Bertrand model is well used and is a widely accepted representation of de-

mand in economic models. Although many insights are gained by using it, in this paper,

we question the assumptions and results of the Bertrand model. We propose a new model

to consider demand using Poisson rates. In Section 2, we provide background information

about the Bertrand model as well as the Poisson distribution. Included is the basic assump-

tions of the Bertrand model and basic properties of the model and also of Poisson processes.

In Section 3 we propose our new model and show how it is applied to a basic well known

problem called the newsvendor problem. We give the background and intuition behind solv-

ing the posed problem and visit the work of Angelos, et. al. [1]. We show how a firm can

use Poisson rates to develop an optimal pricing strategy for a good [10], find the optimal

initial inventory for the retailer, price an inventory option, and find the optimal wholesaler

price all in a finite time horizon sales period. We go through an example of this one good

market setup.

We then generalize the newsvendor problem to include multiple retailers. We call this

problem the newsvendor duopoly problem and explain how to extend the previous results

to several different market types. First in Section 4, we consider a duopolistic case where

the two retailers are selling the same exact product and have the same demand constraints.

Amongst other things, we observe that the pricing strategy of firms selling complementary

goods isn’t always intuitive. We see that a firm with a lot of inventory compared to its rival

is likely to drastically drop prices, even below the optimal sales price at expiration. It is also

shown how cross price elasticity changes over time in a linear demand case. We also observe

that when goods are substitutes, they have higher expected profits when their competitor

has less inventory; when the goods are complements, the firms have higher expected profits

when their competitor has more inventory. We continue to extend the framework to other

1
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market structures.

In Section 5 we look at a duopolistic market in the presence of collusion. We explain how

this is synonymous to examining a monopolistic market. Against conventional wisdom, we

see that optimal initial inventory levels of monopolies aren’t necessarily lower than those in

the duopolistic market. We also observe that the monopolistic profits are not significantly

better than the combined total in the duopolistic market nor are prices necessarily always

higher in the monopolistic case.

Section 6 addresses the same problem with differentiated goods. It covers both the

duopolistic and monopolistic market structures. Our conclusions about monopolies are con-

firmed as we see cases when the total profit is less than that of the duopolistic case and

when the optimal initial inventory levels are higher in the monopolistic market. Because the

goods are differentiated, there is a disparity in the leverage the two firms have in the market.

The differences in market leverage causes there to be imbalances in the market. We observe

several effects of the market imbalances in the behavior of the pricing strategies, the cross

price elasticities, and the expected remaining revenue.

We offer our final remarks in the conclusion found in Section 7 and conclude by reviewing

our findings and defending our approach towards understanding market dynamics using non-

homogeneous Poisson processes.

Chapter 2. Background

2.1 Bertrand Model

The Bertrand model is an economical model used to understand the behavior of firms in an

oligopolistic market. It was introduced as a rival model to the already established Cournot

2
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model, proposed in 1838 by the French philosopher and mathematician Antoine Augustin

Cournot [18]. Unlike the Cournot model where firms optimize profit by choosing output

levels, firms in the Bertrand model optimize their profits by choosing their good’s price.

Joseph Bertrand suggested the new model in 1883 in a critical review of Cournot’s pre-

vious work. One of the critiques of Cournot’s work was that changing quantity may not

be feasible or practical in the short run. This led to one of the advantages of Bertrand’s

model, feasibility; a firm can easily and inexpensively change the prices of their goods, unlike

changing output, which could take extended periods of time to make the adequate changes

at the factories both at the input and output side.

One of the negative results that dissuade economists from fully accepting the Bertrand

model is that price must always equal marginal cost in a multi-firm market, with few excep-

tions. We acknowledge the research done to show price doesn’t have to equal marginal cost

in the presence of product differentiation, demand fluctuations, or in an infinitely pricing re-

peated game but question the core assumptions in the Bertrand model. (Edgeworth showed

that p 6= MC in the case of diminishing returns to scale and quantity restrictions [18].)

2.1.1 Assumptions. The Bertrand model makes the following two controversial assump-

tions:

1. Consumers always purchase from the cheapest seller.

2. If two sellers charge the same price, purchases/sales are split evenly.

3
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This is expressed in the demand for good i as shown below,

qi =



0 if pi > a

0 if pi > pj

a−p
2b

if pi = pj ≡ p < a

a−pi
b

if pi < min{a, pj}

where qi is the quantity demanded for good i, pi is the price of good i, and a is the absolute

highest a consumer will pay for the good.

This is to suggest that the smallest monetary increase will detract all potential buyers

and send them to a competitor. This is not very likely. Consider buying a car. Assume there

are two dealers who sell the exact same car but one charges $0.01 more. Although the penny

increase may discourage some buyers, it is unlikely that many people would change their

decision on such a small difference. This inexplicable phenomenon motivates our research

and our proposed model. In our paper, we will show how our model accounts for these fault

in the Bertrand model.

2.2 Poisson Rates

The Poisson distribution was introduced by the French mathematician and physicist Simeon

Denis Poisson in 1837 and models the number of occurrences or events that will take place in

a given time interval. One of its first and most notable applications was made by Ladislaus

Bortkiewicz in his book “Das Gesetz der kleinen Zahlen,” German for “The Law of Small

Numbers.” The late 19th century publication outlined Bortkiewicz model of Prussian soldiers

deaths caused by a horse kick, or otherwise known as “Bortkiewicz’s disease” [11]. Although

the discovery of the Poisson distribution is sometimes given to Abraham de Moivre (although

not written in such clear form as Poisson’s representation), some believe it should have been

called the “Bortkiewicz distribution” due to his application of it towards rare events [11].

4
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Since its acceptance in statistical theory, the Poisson distribution has been used in many

fields including demography, queuing theory, reliability engineering, and epidemiology. Pois-

son processes are commonly used to model a variety of things including doctors’ visits, tele-

phone calls, birth-death processes, hotel booking, radioactive decay, and website requests

[7],[13].

2.2.1 Poisson Rates in Demand. Given the similarity of its other applications, the

Poisson distribution is a reasonable way to model demand through modeling the arrival rates

of customers. The beauty of the Poisson distribution, unlike other economic models, is that

it incorporates randomness. Most economic models, including the Bertrand and Cournot

model, consider demand in a deterministic approach. Encompassing the randomness of de-

mand helps companies better understand what is happening in their respective market and

allows them to make better pricing strategy decisions as well as teaching them how to adapt

in order to optimize their profit.

Adopting this probabilistic approach and using Poisson rates, allows demand to fluctuate

on a given time interval even in the presence of constant prices. You wouldn’t expect a bakery

to sell the same amount of bread everyday even if the prices remained constant, so in this

regard, it does indeed make sense to use Poisson rates. It is not in the scope of this paper to

explain how to approximate the Poisson parameters for a given economical system but we

note that this is also an active field of research [3]. We will consider a simplistic approach

by assuming the Poisson parameters for demand either follow a linear demand curve or a

log-linear demand curve, both common models of demand.

2.2.2 Properties of Poisson Rates. Let X be a random variable following a Poisson

distribution with Poisson parameter λ. Recall that on a small fixed interval of time ∆t, the

5
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Poisson process satisfies the following

P( X(t+ ∆t) = n+m|X(t) = n)

=


1− λ∆t+ o(∆t) if m = 0

λ∆t+ o(∆t) if m = 1

o(∆t) if m > 1

where m,n ∈ Z. Therefore if we modeled demand, D, on the given interval, we could

represent the number of units demanded with a certain probability as follows

D =


0 w/ prob 1− λ∆t+ o(∆t)

1 w/ prob λ∆t+ o(∆t)

≥ 2 w/ prob o(∆t)

(2.1)

We will use this fact of Poisson processes repeatedly throughout the paper in order to solve

subproblems of a dynamical system.

Chapter 3. Newsvendor Problem

The newsvendor problem is one of the canonical problems in inventory management [17],[15].

In the newsvendor problem, a retailer or salesman buys initial inventory, I0 at wholesale price,

C0, at the beginning of the day, t = 0, and sells during the day [0, T ]. The good is perishable

and so the time horizon, [0, T ], is finite. At the end of the sale period, t = T , the remaining

inventory, IT , is no longer sellable (such as a newspaper) but carries a salvage price of CT

(for example the newspaper may be recycled) [16]. Many questions arise for the salesman

and are addressed in current research. What is the optimal sales price? What is the optimal

initial inventory? We will answer both of these questions.

We let u be the fixed price over the sales period andX be the random variable representing

6
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the demand for the day. We write the salesman’s profit function,

Π = I0(u− C0)− (u− CT )IT

where IT is the only variable because everything else is a constant but IT depends directly

on the random variable X. In fact

IT = max(I0 −X, 0).

The expected profit is therefore

E[Π] = I0(u− C0)− (u− CT )E[IT ].

Angelos, et. al. [1] has shown that the derivative of the remaining inventory with respect to

the initial inventory is

d

dI0

E[IT ] = F (I0).

where F is the cumulative distribution function of the random variable X. Take the deriva-

tive of expected profit with respect to the initial inventory and solve for the optimal initial

inventory.

d

dI0

E[Π] = (u− C0)− (u− CT )
d

dI0

E[IT ]

= (u− C0)− (u− CT )F (I0) = 0

I∗0 = F−1

(
u− C0

u− CT

)

We now have the optimal initial inventory given a fixed price. In the next section we explore

what would happen if we varied prices as the sales period progressed.

7
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3.1 Pricing Strategy

Consider the same problem but now allow the newsvendor to vary the price throughout the

sales period. The question of what is the optimal pricing strategy given dynamic pricing

now arises. This idea of dynamic pricing for a perishable good is also an active field of

research [20]. Let {uj(t)}I0j=1 be a set of functions representing the sales price at time t with

j remaining units of inventory. Let X(t) be a nonhomogeneous Poisson process where the

customers’ purchases arrive at the rate λ(uj(t)). In order to solve for the optimal pricing

strategy, we will discretize the time interval, set up a dynamical program, solve the subprob-

lem by finding the optimal price on the given time interval, and then back iterate to get an

optimal pricing strategy [4],[6],[5].

First discretize the sales period [0, T ] into n equal time intervals. Fix uj(t) for each time

interval and let ui,j = uj(i∆t). Also let λi,j = λ(uj(i∆t)) and Ii = I(i∆t). By Equation 2.1,

the demand for the product on a small enough time interval, i, is given by

Di =


0 w/ prob 1− λi,j∆t+ o(∆t)

1 w/ prob λi,j∆t+ o(∆t)

≥ 2 w/ prob o(∆t)

. (3.1)

Let S be the function representing the inventory sold during period i given by

S(Ii, Di) = min(Ii, Di).

Consequently, the state equation is given by

Ii+1 = Ii − S(Ii, Di). (3.2)

Maximizing the expected profit given a set inventory level is the same as maximizing the

8
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expected revenue given the same inventory level. Since these are the same problems given

a set amount of inventory, we can examine maximizing the total revenue as if it was the

expected profit and then decide the optimal inventory numerically. The total revenue is

given by

R =
n−1∑
k=0

uk,IkS(Ik, Dk) + CT (I0 −
n−1∑
l=0

Dl)
+

where (.)+ = max(0,. ) and S(Ik, Dk) represents the sales at time period k. Inventory at time

k is given by Ik. The remaining revenue at time i is

R(Ii) =
n−1∑
k=i

uk,IkS(Ik, Dk) + CT (I0 −D)+

where D =
∑n−1

l=0 Dl. Denote Ri,j = R(Ii) when j = Ii for simplicity. We see Ri,0 = 0 and

Rn,j = jCT .

We desire to optimize the expected revenue by maximizing expected remaining revenue

at time i given all information from time 0 to i. This is the same as choosing ui,j at time i

for all possible j, 1 ≤ j ≤ I0 to maximize

E[Ri,j] =
n−1∑
k=i

uk,IkE[S(Ik, Dk)] + CTE[(I0 −D)+] (3.3)

subject to the state equation Ii+1 = Ii − S(Ii, Di).

Using the law of total expectation we can write

E[Ri,j] = E(E[Ri,j|Di])

=
∑
k≥0

E[Ri,j|Di = k]P(Di = k).

9
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For k ≥ 2 we have P(Di = k) = o(∆t). Recall that the sum of little-o terms is still little-o

to get

E[Ri,j] = E[Ri,j|Di = 0]P(Di = 0) + E[Ri,j|Di = 1]P(Di = 1) + o(∆t). (3.4)

Let Ei,j = E[Ri,j]. If j > 0 then

E[Ri,j|Di = 0] = E

[
n−1∑
k=i

uk,IkS(Ik, Dk) + CT (I0 −D)+

]
(3.5)

= ui,jS(Ii, 0) + E

[
n−1∑
k=i+1

uk,IkS(Ik, Dk) + CT (I0 −D)+

]
(3.6)

= Ei+1,j. (3.7)

Similarly, it can be shown that

E[Ri,j|Di = 1] = ui,j + Ei+1,j−1. (3.8)

Substituting Equations 3.7 and 3.8 in we can solve for Ei,j in Equation 3.4,

Ei,j = (1− λi,j∆t)Ei+1,j + λi,j∆t(ui,j + Ei+1,j−1) + o(∆t). (3.9)

We now have a dynamical program with boundary condition Rn,j = jCT . We can back

iterate to solve the program by solving for u∗i,j in the subproblem. We do this by taking the

derivative of Equation 3.9 with respect to ui,j to get

0 = λ′i,j(u
∗
i,j)∆t

(
u∗i,j + Ei+1,j−1 − Ei+1,j

)
+ λi,j(u

∗
i,j)∆t. (3.10)

We can now solve for u∗i,j to solve the subproblem. Given u∗i,j in any time period i∆t, we

can back iterate to get the optimal pricing strategy. We can do this for different demand

functions for λi,j(u
∗
i,j). We will show the results for both the linear demand model and the

10
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log-linear demand model.

3.1.1 Linear Demand. Suppose the Poisson parameter for demand is a linear function

with respect to price. That is to say λi,j(u
∗
i,j) = a− bu∗i,j for some a, b > 0 then 3.10 gives us

u∗i,j =
Ei+1,j − Ei+1,j−1

2
+

b

2a
. (3.11)

Figures 3.1 and 3.2 below show the optimal sales price strategy as well as the expected

remaining revenue.

Figure 3.1: Optimal sale prices for each inventory level I. Assume I0 = 10, λ(u) = 10 −
2u, C0 = 4, CT = 2, and T = 10.

Figure 3.1 shows the optimal pricing strategy measured in price over the time of good’s

lifespan. We see that as the expiration time approaches, the optimal price decreases as

retailers are trying to “dump” their inventory. This is a common practice in inventory

management. Figure 3.2 is a plot of the expected remaining revenue over time. We see that

as time expires, the expected remaining revenue decreases. We see this decrease because the

retailer has lowered prices in order to get as much revenue as possible before the expiration

time. At expiration, the salvage price is lower than what the retailer could normally sell at

so he tries to pull in as much revenue while it’s still worth something.

11
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Figure 3.2: Expected remaining revenue for each inventory level I. Again assume I0 =
10, λ(u) = 10− 2u, C0 = 4, CT = 2, and T = 10.

3.1.2 Log-Linear Demand. Now suppose the Poisson parameter for demand is a log-

linear function with respect to demand. In other words, λi,j(u
∗
i,j) = a(u∗i,j)

−b for some b > 1

then 3.10 gives us

u∗i,j =
b

b− 1
(Ei+1,j − Ei+1,j−1) . (3.12)

Graphs of the optimal pricing strategy and the expected remaining revenue will be similar

to those in Figures 3.1 and 3.2.

3.2 Optimal Inventory

Solving the dynamic programming problem gives the expected remaining revenue of each

level of inventory at any given time and a pricing strategy that will generate that expected

remaining revenue. Clearly the more inventory, the higher the expected remaining revenue;

a retailer, however, is concerned about maximizing profit, not just revenue. Knowing the

expected remaining revenue will help the retailer choose which inventory to start out at to

maximize profit. Recall that profit is given by total revenue minus total costs. Assume that

the total cost is given by the inventory level, I0, multiplied by the wholesale price, C0, of the

12
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good, TC(I0) = C0I0. In other words,

ΠI0 =
n−1∑
k=0

uk,IkS(Ik, Dk) + CT (I0 −
n−1∑
l=0

Dl)
+ − C0I0.

Recall that E0,I0 is the expected remaining revenue, E[R0,I0 ], at time t = 0 with I0

remaining units of inventory. Then the expect profit can be found to be

E[ΠI0 ] = E

[
n−1∑
k=0

uk,IkS(Ik, Dk) + CT (I0 −
n−1∑
l=0

Dl)
+

]
− C0I0

= E0,I0 − C0I0.

We can numerically find the optimal initial inventory level, I∗0 , by plotting the expected

profit values at each inventory level in consideration. This is easy now that we already have

the expected remaining revenue values, E0,I0 at time t = 0, from the dynamic programming

problem. Figure 3.3 show the expected profit across the different initial inventory levels. We

see that in our previous example, there is a clear optimum value of inventory at I0 = 8. We

also see that the expected profit of the company with initial inventory 8, is slightly above

3.5.

Figure 3.3: Optimal inventory in a one good market over initial inventory level I. Assume
λ(u) = 10− 2u, C0 = 4, CT = 2, and T = 10.

13



www.manaraa.com

3.3 Inventory Probabilities

A retailer may be interested in finding the expected remaining inventory, E[IT ]. One potential

reason to calculate E[IT ] is to price a European inventory option. A European inventory

option is similar to a European option on a stock. A European inventory option gives the

owner the right to sell inventory at a set strike price, K, at a given time, T . The strike price

is assumed to be above the salvage price, K ≥ CT , otherwise the option is useless. Although

buying an inventory option doesn’t increase the expected profit to the retailer, it has been

proven to eliminate some risk through decreasing the variance of the expected profit. Note

that IT = (I0 −
∑n−1

l=0 Dl)
+. Consider the profit function of a retailer without an inventory

option

Π =
n−1∑
k=0

uk,IkS(Ik, Dk) + CT (I0 −
n−1∑
l=0

Dl)
+ − C0I0

=
n−1∑
k=0

uk,IkS(Ik, Dk) + CT IT − C0I0

and with an inventory option

Π̂ =
n−1∑
k=0

uk,IkS(Ik, Dk) +KIT − C0I0 − p

where p is the cost of the option. The cost neutral price of the option is found when

E[Π] = E[Π̂]. It can be seen that this price is given by

p = (K − CT )E[IT ].

We note that with an inventory option, the optimal pricing strategy will likely change but

it has been show that given a set pricing strategy, {ui,j}I0j=0, the expected profit with and

14
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without the inventory option is the same [1]. In other words,

E
[
Π|{u∗i,j}

I0
j=0

]
= E

[
Π̂|{u∗i,j}

I0
j=0

]
.

Now let Pj(t) = P(I(t) = j) denote the probability that the inventory level is at j units

at time t. Consider the probability distribution P(t) = (P0(t),P1(t), . . . ,PI0(t)) where I0

is the initial inventory level. By definition of expected value, E[IT ] =
∑I0

j=0 jPj(T ) and the

price of the European option is

p = (K − CT )E[IT ]

= (K − CT )

I0∑
j=0

jPj(T ).

Now we explain how to find Pj(T ). First discretize the time interval [0, T ] into n equal

subintervals. So ∆t = T/n and denote Pi,j = Pj(i∆t). Because the demand is a Poisson

process we can use Equation 3.1 to see that the following transitional probabilities hold

between probability states over time:

P(Ii+1 = j|Ii = j) = 1− λi,j∆t+ o(∆t)

P(Ii+1 = j|Ii = j + 1) = λi,j+1∆t+ o(∆t)

P(Ii+1 = j|Ii ≥ j + 2) = o(∆t).

By using laws of probability and partitioning the probability space, we also know that

Pi+1,j = P(Ii+1 = j) =

I0∑
k=0

P(Ii+1 = j|Ii = k)P(Ii = k)

=

I0∑
k=0

P(Ii+1 = j|Ii = k)Pi,k

15
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We can simplify this by including the transition probabilities from previous inventory level

as follows

Pi+1,j =


(1− λi,I0∆t)Pi,I0 + o(∆t) j = I0

(1− λi,I0∆t)Pi,j + λi,j+1∆tP +i,j+1 +o(∆t) 0 < j < I0

Pi,0 + λi,1∆tPi,1 + o(∆t) j = 0

. (3.13)

Note that P(0) = (0, 0, . . . , 0, 1) since at time t = 0, there is exactly I0 units of inventory

by definition. We can now use our optimal pricing strategy which we already found and our

initial condition to find the probability distribution P(t) at any time t.

In Figure 3.4 we start with initial inventory level of I0 = 8 since that was our optimal

inventory level. The blue line with the first spike above the rest is when inventory is at the

initial inventory level. As we progress to the following lines with spikes, we decrement the

inventory by one every time, giving the last green line the inventory level of zero. Given the

inventory probabilities at time T , we can calculate E[IT ] = 0.1103 and p = (K−CT )E[IT ] =

0.1103.

Figure 3.4: Inventory probabilities over time. Let λ(u) = 10− 2u, C0 = 4, CT = 1, K = 2
and T = 10.
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3.4 Wholesaler Optimization

A wholesaler selling the good to the distributor may notice that the firm is making a greater

profit than they think the distributor warrants. The wholesaler may try to capture some of

the profit by adjusting the wholesale price, C0. We can numerically solve for the optimal

wholesale price for the wholesaler by simply maximizing the wholesaler’s profit function.

Assume it’s revenue is simply the optimal initial inventory for the firm, I∗0 , multiplied by the

per unit profit, (C0 − CT ) as seen below.

ΠW = I∗0 ∗ (C0 − CT )

We know that the optimal initial inventory, I∗0 , is a function of C0 but we solved for

I∗0 numerically; so there is no closed form solution. We can however, solve for the optimal

wholesale price, C0, numerically. In Figures 3.5 and 3.6 we graph the wholesaler’s profit as

a function of wholesale price. The sawtooth shape is caused because as we go right on the

x-axis, there is a short period when the optimal inventory is the same but the price is in-

creasing, resulting in the increasing part of the sawtooth. As the price continues to increase,

the optimal inventory drops, resulting in the decreasing part of the sawtooth.

Figure 3.5: Optimal wholesale price given λ(u) = 10− 2u, CT = 0 and T = 10.
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Figure 3.6: Optimal wholesale price given λ(u) = 10− 2u, CT = 2 and T = 10.

We note that if the wholesale price is below two, then the firm has an arbitrage op-

portunity where the buy price is less than the guaranteed sales price. We can eliminate the

arbitrage opportunity in one of two ways. Either consider the market without a salvage price

or consider the wholesale prices greater than two and also look at the revenues of all the

goods after the first two units of price. Considering the market without a salvage price (as

we did in Figure 3.5) will change the optimal pricing strategy for the firm and will ultimately

change the dynamics of the whole problem. Considering the wholesale prices greater than

two and looking at the revenues from all the goods after the first two units of price is equiv-

alent to considering the marginal cost of the wholesaler equal to two. We do this because

we’re interesting in finding the optimum profit we can gain from the firm and not towards

whoever is buying the salvage priced item. This way, there’s no arbitrage opportunities and

we successfully see what the optimal wholesale price is. In our case, we see that the optimal

wholesale price is close to 3.5.

Chapter 4. Duopolistic Newsvendor Problem

A duopoly is an oligopoly with two firms. In other words, a duopoly is a market with only

two goods sold by different firms. These goods can be homogeneous or heterogeneous goods.
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Homogeneous goods refers to goods that are identical; whereas, heterogeneous goods are not

the same goods but they sell in the same market. In the context of the newsvendor problem,

we could consider two newspaper boys selling the same paper, the New York Times, versus

two newspaper boys selling the New York Times and the Washington Post respectively as

examples of homogeneous versus heterogeneous goods. Duopolistic models can also give us

insights on market where two firms are the dominant players in a market.

Consider the demand of two goods in a duopolistic market as given by the random vari-

ables, Xa and Xb, which are Poisson processes. Assume the Poisson parameters are functions

of the price of the two goods, λa(ua, ub), λa(ua, ub) respectively. Firms a and b sell goods

a and b respectively. Let the firms have an initial inventory amounts, Ia,0, Ib,0 respectively.

Allow the firms to vary their prices and let {{ua,j,k(t)}
Ia,0
j=1}

Ib,0
k=1 and {{ub,j(t)}

Ia,0
j=1}

Ib,0
k=1 be the

respective set of functions representing the firms pricing strategies given the respective in-

ventory at time t ∈ [0, T ] with j, k remaining inventory units of goods a, b respectively. Note

that the optimal price of good a depends on the inventory levels of both good a and b and

we accordingly adapt our pricing strategies to incorporate this. At time T the goods have

expired and are now worth some salvage prices Ca,T and Cb,T respectively. The remaining

inventories for time t is given by Ia,t, Ib,t.

The cross price elasticity, Ea,b, is the percent change in quantity demanded for good a

divided by the percent change in the price of good b. This can be written mathematically as

Ea,b =
∂Qa

∂Pb

Pb
Qa

.

In our case, the demand is a random variable but we can use the Poisson parameter λa,

which is the mean of the random variable, to represent our demand function, Qa. We have
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Ea,b =
∂λa
∂Pb

Pb
λa
. (4.1)

Two goods are said to be a complementary goods if the cross price elasticity is positive.

If the cross price elasticity is negative, they are said to be substitutes. Since both Pb and

λa are always nonnegative, the sign of the cross price elasticity is solely determined by ∂λa
∂Pb

.

It is worth while to examine both cases as the behavior of the optimal sale price strategy

changes depending on whether the goods are complements or substitutes. If Ea,b = 0 and

Eb,a = 0, then we say the goods are neither substitutes nor complements.

Given a pricing strategy, we can find the demand functions for the Poisson rates and the

cross price elasticity of the goods. So once we find that, we’ll be able to calculate the Poisson

rates, the cross price elasticities, and the expected remaining revenues of both goods.

4.1 Pricing Strategy

In order to find the optimal pricing strategy, discretize the time interval into time spans of

length ∆t. We assume that on the discretized time interval, the firm fixes the price. Similar

to the newsvendor problem, let S(Ia,k, Da,k) represent the amount of units of good a sold at

time k as a function of remaining inventory Ia,k and demand Da,k. We let ua,i,j,k represent

the sales price of good a at time i∆t with remaining inventory levels j, k respectively for

goods a, b. We write retailer a’s profit function, Πa as

Πa =
n−1∑
k=0

ua,k,Ia,k,Ib,kS(Ia,k, Da,k) + Ca,T Ia,T − Ca,0Ia,0
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Take the expected value of Πa we can find that

E[Πa] =
n−1∑
k=0

ua,k,Ia,k,Ib,kE[S(Ia,k, Da,k)] + Ca,TE[IT ]− Ca,0Ia,0

We’ve assumed that the prices ua,i,j,k, ub,i,j,k are fixed on each small interval of time.

Fixing the prices on small intervals implies that the Poisson parameters λa,i,j,k, λb,i,j,k are

also fixed on the time interval. We can then state that

P( Xa(t+ ∆t) = n+m|Xa(t) = n)

=


1− λa(ua,j(t))∆t+ o(∆t) if m = 0

λa(ua,j(t))∆t+ o(∆t) if m = 1

o(∆t) if m ≥ 2

.

Which gives us

Da,i =


0 w/ prob 1− λa,i,j,k∆t+ o(∆t)

1 w/ prob λa,i,j,k∆t+ o(∆t)

≥ 2 w/ prob o(∆t)

(4.2)

for our demand function of good a on interval i. So the amount of inventory a sold is still

represented by

Sa(Ia,i, Da,i) = min{Ia,i, Da,i}.

The same state equation,

Ia,i+1 = Ia,i − S(Ia,i, Da,i),

still holds.

Recall that after the initial inventory is set, maximizing total revenue is equivalent to

maximizing total profit. As before, we will maximize the total revenue given set initial
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inventory levels, Ia,0, Ib,0, and then discuss how to choose the optimal inventory in order to

maximize profit. We can write total revenue for firm a as

Ra =
n−1∑
k=0

ua,k,Ia,k,Ib,kS(Ia,k, Da,k) + Ca,T Ia,T

and remaining revenue as

R(Ia,i) =
n−1∑
k=i

ua,k,Ia,k,Ib,kS(Ia,k, Da,k) + Ca,T Ia,T .

Note that the total revenue for firm b is equivalent up to symmetry.

Choose ua,i,j,k, ub,i,j,k at time i for all 1 ≤ j ≤ Ia,0, 1 ≤ k ≤ Ib,0 to maximize their

respective total expected revenue functions

E[Ra,i,j,k] =
n−1∑
`=i

ua,i,j,kE[Sa(Ia,`, Da,`)] + Ca,TE[Ia,T ],

and E[Rb,i,j,k]. From now on denote E[Ra,i,j,k] as Ea,i,j,k. By laws of total expectation we have

Ea,i,j,k = E(E[Ra,i,j,k|Da,i, Db,i])

=
∑
c,d≥0

E[Ra,i,j,k|Da,i = c,Db,i = d]P(Da,i = c,Db,i = d)

= E[Ra,i,j,k|Da,i, Db,i = 0]P(Da,i, Db,i = 0)

+E[Ra,i,j,k|Da,i = 0, Db,i = 1]P(Da,i = 0, Db,i = 1)

+E[Ra,i,j,k|Da,i = 1, Db,i = 0]P(Da,i = 1, Db,i = 0) (4.3)

+E[Ra,i,j,k|Da,i, Db,i = 1]P(Da,i, Db,i = 1)

+o(∆t).
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Examine each part of the summation and note that

E[Ra,i,j,k|Da,i, Db,i = 0]

= E
[∑n−1

`=i ua,`,Ia,`Sa,` + Ca,T (Ia,0 −Da)
+|Da,i, Db,i = 0

]
= ua,i,j,kSa,i(Ia,i, 0) + E

[∑n−1
`=i+1 ua,`,Ia,`Sa,` + Ca,T (Ia,0 −Da)

+
]

= Ea,i+1,j,k. (4.4)

Similarly, it can be show that

E[Ra,i,j,k|Da,i = 0, Db,i = 1] = Ea,i+1,j,k−1 (4.5)

E[Ra,i,j,k|Da,i = 1, Db,i = 0] = ua,i,j,k + Ea,i+1,j−1,k (4.6)

E[Ra,i,j,k|Da,i = 1, Db,i = 1] = ua,i,j,k + Ea,i+1,j−1,k−1. (4.7)

We also note that assuming the Poisson rates are independent, we get

P(Da,i, Db,i = 0) = [1− λa,i,j,k∆t+ o(∆t)] ∗ [1− λb,i,j,k∆t+ o(∆t)] (4.8)

P(Da,i = 0, Db,i = 1) = [1− λa,i,j,k∆t+ o(∆t)] ∗ λb,i,j,k∆t (4.9)

P(Da,i = 1, Db,i = 0) = λa,i,j,k∆t ∗ [1− λb,i,j,k∆t+ o(∆t)] (4.10)

P(Da,i, Db,i = 1) = λa,i,j,k∆t ∗ λb,i,j,k∆t. (4.11)

Substituting equations 4.4-4.11 in for the total expectation in equation 4.3 above, we get

Ea,i,j,k = [1− λa,i,j,k∆t] ∗ [1− λb,i,j,k∆t] (Ea,i+1,j,k)

+ [1− λa,i,j,k∆t] ∗ λb,i,j,k∆t ∗ (Ea,i+1,j,k−1)

+λa,i,j,k∆t ∗ [1− λb,i,j,k∆t] (ua,i,j,k + Ea,i+1,j−1,k)

+λa,i,j,k∆t ∗ λb,i,j,k∆t (ua,i,j,k + Ea,i+1,j−1,k−1)

+o(∆t)
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We know that Ra,n,j,k = jCa,T where n is the number of discrete time intervals,
(
T
∆t

)
,

because Ca,T is the salvage price. We can now find Ea,i,j,k and Eb,i,j,k for all i, j, k by using

a dynamical program to iterate backwards from this initial condition. We must also note

that if j or k is zero, then the Poisson rate to sell the said good is zero. In other words,

λa,i,0,k = 0 and λb,i,j,0 = 0. So we know that

Ea,i,j,0 = [1− λa,i,j,0∆t] ∗ (Ea,i+1,j,0) + λa,i,j,0∆t ∗ (ua,i,j,0 + Ea,i+1,j−1,0) + o(∆t)

To find the optimal price for inventory levels j, k at time i, we take the derivative of

the previous equations with respect to ua,i,j,k, set them equal to zero, take the limit as ∆t

approaches zero and solve for u∗a,i,j,k. Through symmetry we can infer that u∗b,i,j,k will be

similar to u∗a,i,j,k.

We find,

0 =
∂Ea,i,j,0
∂ua,i,j,0

= −λ′a,i,j,0∆t ∗ (Ea,i+1,j,0) + λ′a,i,j,0∆t ∗ (ua,i,j,0 + Ea,i+1,j−1,0) + λa,i,j,0∆t
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when k = 0 and

0 =
∂Ea,i,j,k
∂ua,i,j,k

= −λ′a,i,j,k∆t [1− λb,i,j,k∆t] (Ea,i+1,j,k)

− [1− λa,i,j,k∆t]λ′b,i,j,k∆t (Ea,i+1,j,k)

−λ′a,i,j,k∆t ∗ λb,i,j,k∆t ∗ (Ea,i+1,j,k−1)

+ [1− λa,i,j,k∆t] ∗ λ′b,i,j,k∆t ∗ (Ea,i+1,j,k−1)

+λ′a,i,j,k∆t ∗ [1− λb,i,j,k∆t] (ua,i,j,k + Ea,i+1,j−1,k)

−λa,i,j,k∆t ∗ λ′b,i,j,k∆t (ua,i,j,k + Ea,i+1,j−1,k)

+λa,i,j,k∆t ∗ [1− λb,i,j,k∆t]

+λ′a,i,j,k∆t ∗ λb,i,j,k∆t
(
u∗a,i,j,k + Ea,i+1,j−1,k−1

)
+λa,i,j,k∆t ∗ λ′b,i,j,k∆t

(
u∗a,i,j,k + Ea,i+1,j−1,k−1

)
+λa,i,j,k∆t ∗ λb,i,j,k∆t.

when k 6= 0. We can divide by ∆t first and then take the limit as ∆t approaches zero to find

simplify down to

0 = −λ′a,i,j,0 ∗ (Ea,i+1,j,0) + λ′a,i,j,0 ∗ (ua,i,j,0 + Ea,i+1,j−1,0) + λa,i,j,0 (4.12)

when k = 0 and

0 = −λ′a,i,j,k (Ea,i+1,j,k)− λ′b,i,j,k (Ea,i+1,j,k) + λ′b,i,j,k ∗ (Ea,i+1,j,k−1) + λ′a,i,j,k ∗ (ua,i,j,k + Ea,i+1,j−1,k) + λa,i,j,k (4.13)

when k 6= 0.

We can now plot the optimal pricing strategy for any given demand function representing

the Poisson parameter. The pricing strategy is given regardless if the products are comple-

ments or substitutes.
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4.1.1 Linear Demand. For the rest of the paper, we will assume the Poisson parameters

are linear functions with respect to the prices. In other words, the Poisson parameters are

given by the system of equations

 λ1(t)

λ2(t)

 =

 a1

a2

−
 b11 b12

b21 b22


 p1(t)

p2(t)


where b11, b22 > 0. We make this assumption for simplicity and note that this is a common

way to denote the demand for two goods [19]. It is assumed that b11 > b12 and b22 > b21,

otherwise it is theoretically possible to get infinite demand.

We now find the optimal pricing strategy for the linear demand case. We can see that

λ′a,i,j,0 =
∂λ′a,i,j,k
∂ua,i,j,k

= −b11. Substituting λa,i,j,0 and λ′a,i,j,0 into Equation 4.12, we get

0 = b11 (Ea,i+1,j,0)− b11

(
u∗a,i,j,0 + Ea,i+1,j−1,0

)
+ a1 − b11u

∗
a,i,j,0 − b12ub,i,j,0

u∗a,i,j,0 =
1

2b11

(a1 + b11(Ea,i+1,j,0 − Ea,i+1,j−1,0)− b12ub,i,j,0)

Similarly

u∗b,i,0,k =
1

2b22

(a2 + b22(Eb,i+1,0,k − Eb,i+1,0,k−1)− b21ua,i,0,k) .

Now substitute λa,i,j,0 and λ′a,i,j,0 into Equation 4.13 to get

0 = b11 (Ea,i+1,j,k) + b22 (Ea,i+1,j,k)− b22 (Ea,i+1,j,k−1)− b11

(
u∗a,i,j,k + Ea,i+1,j−1,k

)
+(a1 − b11u

∗
a,i,j,k − b12ub,i,j,k)

u∗a,i,j,k =
1

2b11

(a1 + b11Ea,i+1,j,k + b21Ea,i+1,j,k − b21Ea,i+1,j,k−1 − b11Ea,i+1,j−1,k − b12ub,i,j,k)

By symmetry we can find a similar optimal value for u∗b,i,j,k. Set up the system of equations
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and solve for u∗a,i,j,k and u∗b,i,j,k to get

 u∗a,i,j,k

u∗b,i,j,k

 =

 2b11b22 b12b22

b21b11 2b11b22

−1  b22 (a1 + (b11 + b21)Ea,i+1,j,k − b21Ea,i+1,j,k−1 − b11Ea,i+1,j−1,k)

b11 (a2 + (b22 + b12)Eb,i+1,j,k − b12Eb,i+1,j−1,k − b22Eb,i+1,j,k−1)


whenever k 6= 0.

The Figures 4.1 and 4.3 are the graphs of the optimal pricing strategies of a two good

market with linear demand functions. The first graph is when the goods are substitutes and

the second graph shows complementary goods. Similarly, the Figures 4.2 and 4.4 are the

corresponding graphs of the expected remaining revenue.

Figure 4.1: Optimal sale prices for two substitutes in a duopolistic market. Assume Ia,0 =
Ib,0 = 3 and λ1(p1, p2) = 10 − 5p1 + 3p2 and λ2(p1, p2) = 10 + 3p1 − 5p2. Let Ca,0 = Cb,0 =
4, Ca,T = Ca,T = 2, and T = 4.

In both cases (substitutes and complements), a general rule of thumb would say that the

remaining time till expiration is correlated with the sale prices and as the expiration time

approaches, the sale price decreases. However, this isn’t always true for the complementary

goods. This alone is a phenomenon worth noting. Before we explain this phenomenon, we

also note that some of the optimal sale price lines cross. This is due to the imbalance of

inventory levels. At the beginning of the time period, the competitor’s inventory level is less

relevant as it is closer to the expiration date. This causes the sale prices to cross as time
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Figure 4.2: Expected remaining revenue for substitutes in a duopolistic market. Assume
Ia,0 = Ib,0 = 3, λ1(p1, p2) = 10 − 5p1 + 3p2, λ2(p1, p2) = 10 + 3p1 − 5p2, Ca,0 = Cb,0 =
4, Ca,T = Ca,T = 2, and T = 4.

approaches its expiration.

Why does the behavior of the pricing strategy of the complementary goods differ from

that of the substitutes? It is interesting to see that in some cases the optimal sale price in

the complementary goods has a dip and is actually lower before its optimal sale price at

the expiration time. Even though the sales price never goes below the salvage price, this

behavior is still hard to explain; especially since it doesn’t happen in the substitute case.

We do notice that this behavior happens when the firm has a lot of their product but

the competing firm has low inventory levels. For example, this happens in Figure 4.3 when

inventory levels are (3, 1). The low inventory level firm has lots of time relatively to sell their

few units of product. The firm wants to take advantage of the time so they raise their prices

in order to increase the expected remaining revenue. This rise in price decreases the demand

not only for the corresponding good but also the other good because they’re complements.

Since the higher inventory level firm has more inventory, relatively little time, and now a

lower demand, they lower their prices in order to compensate. The low inventory firm keeps

prices high until right before the expiration time. So as the expiration time gets closer, the
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Figure 4.3: Optimal sale prices for complementary goods in a duopolistic market. Assume
Ia,0 = Ib,0 = 3, λ1(p1, p2) = 10 − 2p1 − p2, λ2(p1, p2) = 10 − p1 − 2p2. Let Ca,0 = Cb,0 =
3, Ca,T = Ca,T = 2, and T = 10.

Figure 4.4: Expected remaining revenue for complementary goods in a duopolistic market.
Assume Ia,0 = Ib,0 = 3, λ1(p1, p2) = 10− 2p1 − p2, λ2(p1, p2) = 10− p1 − 2p2, Ca,0 = Cb,0 =
3, Ca,T = Ca,T = 2, and T = 10.

low inventory level firm dramatically drops their prices which sends the demand for the other

firm up due to the higher demand. This is an interesting phenomenon that isn’t intuitive

and captured by this model of demand.

4.2 Cross Price Elasticity

We determined that two goods are complements or substitutes if the cross price elasticity is

positive or negative respectively and that the sign of the cross price elasticity is determined

29



www.manaraa.com

by ∂λa
∂Pb

. It is easy to see that ∂λa
∂Pb

= −b12. So the sign of the cross price elasticity is deter-

mined solely by the sign of b12. Similarly the sign of Eb,a is determined by b21. Therefore,

if b12 and b21 are positive, the goods are complements and if b12 and b21 are negative, the

goods are substitutes.

Recall that the cross price elasticity of good a with respect to good b is given by

Ea,b =
∂λa
∂Pb

Pb
λa
.

However the price and the Poisson rate are both functions of time so we should really write

Ea,b(t) =
∂λa
∂Pb

Pb(t)

λa(t)
.

We calculated the optimal sales price strategies by discretizing the time intervals. Having

calculated the optimal pricing strategies for both firms, we can find the corresponding Pois-

son rates and cross price elasticity for each time interval in the discretization by plugging in

the optimal sale prices.

We write Ea,i,j,k to denote the cross price elasticity of good a with respect to good b, at

time i∆t when there is still (j, k) levels of inventory for a and b respectively. We write

Ea,i,j,k =
∂λa
∂Pb

u∗b,i,j,k
λa,i,j,k

(4.14)

where λa,i,j,k is a function of the optimal sale prices u∗a,i,j,k and u∗b,i,j,k. So although ∂λa
∂Pb

is

a constant in the linear demand case, the cross price elasticity Ea,i,j,k is still a function of

time and will change as the sales price and demand change. Figures 4.5 and 4.6 are the

plots of the cross price elasticity as time progresses for each corresponding inventory level

for markets with the substitutes and complementary goods respectively.
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Figure 4.5: Cross price elasticity of a duopolistic market with homogeneous substitutes over
time. Assume Ia,0 = Ib,0 = 3, λ1(p1, p2) = 10 − 5p1 + 3p2, λ2(p1, p2) = 10 + 3p1 − 5p2,
Ca,0 = Cb,0 = 4, Ca,T = Ca,T = 2, and T = 4.

Figure 4.6: Cross price elasticity of a duopolistic market with homogeneous, complementary
goods over time. Assume Ia,0 = Ib,0 = 3, λ1(p1, p2) = 10−2p1−p2, λ2(p1, p2) = 10−p1−2p2,
Ca,0 = Cb,0 = 3, Ca,T = Ca,T = 2, and T = 10.

At the beginning of the time period, the magnitude of the elasticities are higher than

at anywhere else. This is due because the prices are at their highest peak and the demand

parameters, λ, are at the lowest at the beginning of the time period. Looking at Equation

4.14, it is easy to see why this would cause the magnitude of the cross price elasticity to be

high.
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Similarly, we see that the highest magnitudes of cross price elasticity for both the sub-

stitute and complementary goods occur when the respective good has the lowest inventory

level. We explain this because the less inventory you have, the more likely you are to have

high prices and low demand because you’re trying to milk the system for as much as you

can. Because your demand is low, the magnitude of the cross price elasticity is high.

Next we examine the effect of the competitor’s inventory level on cross price elasticity. In

the substitutes good market, the magnitudes of cross price elasticity are ordered according

to the number of competitor’s inventory. That is to say, the lower the competitor’s inven-

tory level correspond with lower the cross price elasticity holding all else constant. The

complementary goods are opposite and the competitor’s inventory level and the cross price

elasticity are inversely proportional.

Although we would expect the competitors’ inventory levels to influence cross price elas-

ticity differently for substitutes and complements, we now have a way to measure their

effects.

4.3 Optimal Inventory

Again we desire to find the optimal inventory level that maximizes profits for firm a. Recall

that the total profit of firm a, assuming total cost, TC, has no overhead cost and is just

given by TC = Ca,0Ia,0, is given by

Πa =
n−1∑
k=0

ua,k,Ia,k,Ib,kS(Ia,k, Da,k) + Ca,T Ia,T − Ca,0Ia,0

and the total revenue of firm a is given by

Ra =
n−1∑
k=0

ua,k,Ia,k,Ib,kS(Ia,k, Da,k) + Ca,T Ia,T .

32



www.manaraa.com

We can find the total profit by taking the difference between total revenue and the total cost

as follows:

Πa = Ra − Ca,0Ia,0. (4.15)

To find the optimal inventory level, we desire to maximize the expect profit E[Πa] with

respect to Ia,0. We can take the expected value of each side of the profit function in Equation

4.15 to get

E[Πa] = E[Ra]− Ca,0Ia,0. (4.16)

We already have the expected revenue given a fixed inventory level from the previous

section so we can easily find the expected profit by subtracting the wholesaler price, Ca,0,

times the given initial inventory level, Ia,0. There is no closed form for the optimal inventory,

but we can numerically find it by plotting the expected profits over the initial inventory levels.

Figures 4.7 and 4.8 are plot of the expected profits over the initial inventory levels for product

a. They can be used to find the Nash Equilibrium, if it exists, in the market.

Figure 4.7: Optimal inventory in a duopolistic market with substitutes. Assume λ1(p1, p2) =
10− 5p1 + 3p2, λ2(p1, p2) = 10 + 3p1 − 5p2, Ca,0 = Cb,0 = 4, Ca,T = Ca,T = 2, and T = 4.

At first glance, one may think that the optimal inventory level is three, in Figure 4.7,
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Figure 4.8: Optimal inventory in a duopolistic market with complementary goods. Assume
λ1(p1, p2) = 10− 2p1 − p2, λ2(p1, p2) = 10− p1 − 2p2, Ca,0 = Cb,0 = 3, Ca,T = Ca,T = 2, and
T = 10.

Ia,0=3 units, and occurs when firm b starts with Ib,0 = 0. However, by symmetry, we

know that if firm a chooses Ia,0 = 3, then firm b will choose an inventory level of Ib,0 = 3.

At this value, there is no reason for either company to deviate, so we know that this,

(Ia,0, Ib,0) = (3, 3), is a Nash Equilibrium.

Similar to the substitute case, we can choose arbitrary starting values for initial inven-

tory (Ia,0, Ib,0) and work our way to the Nash Equilibrium. Let’s start at (Ia,0, Ib,0) = (3, 5).

By symmetry firm b would move initial inventory from Ib,0 = 5 to Ib,0 = 3 where neither

company has incentive to deviate. Therefore the Nash Equilibrium is Ia,0 = Ib,0 = 3.

Technically the complementary good case has two Nash Equilibria found at (Ia,0, Ib,0) =

(3, 3) and (Ia,0, Ib,0) = (2, 2). But we can assume that both firms will see that the other firm

can make more profit if they both start with three units of inventory and will consequently

move to that equilibrium. However, this is the problem with such an empirical analysis; an

optimal initial inventory level may not exist. One of the reasons this happens is because the

initial inventory levels are discrete values and we can not start with fractions of an inventory

unit.
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We should also note that when the goods are substitutes, the firms do better when their

opponents have less inventory. On the other hand, when the goods are complements, the

firms do better when their opponents have more inventory. This is because when a firm

has low inventory, they have higher prices. So in the substitute case, this will increase the

demand for the other good. However, in the complement case, higher opponent prices will

cause a decrease in demand.

4.4 Inventory Probabilities

Again we may wish to find the expected remaining inventory, E[IT ] in order to price an

inventory option. If we had an inventory option on good a where the salvage price is Ca,T

and the strike price is Ka. Then we should price the option as follows

pa = (Ka − Ca,T )E[Ia,T ]

where Ia,T is the remaining inventory at time T , the expiration date.

We see that the original profit function was given by total revenue minus the total cost

as shown below:

Π =
n−1∑
k=0

ua,k,Ia,k,Ib,kS(Ia,k, Da,k) + Ca,T

(
Ia,0 −

n−1∑
l=0

Da,l

)+

− Ca,0Ia,0

=
n−1∑
k=0

ua,k,Ia,k,Ib,kS(Ia,k, Da,k) + Ca,T Ia,T − Ca,0Ia,0

=

(
n−1∑
k=0

(ua,k,Ia,k,Ib,k − Ca,0)S(Ia,k, Da,k)

)
+ (Ca,T − Ca,0) Ia,T

So the expected profit is given by

E[Π] =

(
n−1∑
k=0

(ua,k,Ia,k,Ib,k − Ca,0)E[S(Ia,k, Da,k)]

)
+ (Ca,T − Ca,0)E[Ia,T ]
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Similarly with the inventory option we get

Π̂ =
n−1∑
k=0

ua,k,Ia,k,Ib,kS(Ia,k, Da,k) +KaIa,T − Ca,0Ia,0 − (Ka − Ca,T )E[Ia,T ]

=

(
n−1∑
k=0

(ua,k,Ia,k,Ib,k − Ca,0)S(Ia,k, Da,k)

)
+ (Ka − Ca,0) Ia,T − (Ka − Ca,T )E[Ia,T ]

E[Π̂] =

(
n−1∑
k=0

(ua,k,Ia,k,Ib,k − Ca,0)E[S(Ia,k, Da,k)]

)
+ (Ka − Ca,0)E[Ia,T ]− (Ka − Ca,T )E[Ia,T ]

=

(
n−1∑
k=0

(ua,k,Ia,k,Ib,k − Ca,0)E[S(Ia,k, Da,k)]

)
+ (Ca,T − Ca,0)E[Ia,T ]

Fix a pricing strategy. Call it u∗. It can be shown that the expected profits with and

without the inventory are the same, E[Π|u∗] = E[Π̂|u∗], by substituting the pricing strategy

into the expected profit functions.

In order to find the price of the option, we must find E[IT ]. To do this, discretize the

time interval into n equal intervals so that T = n ∗∆t. We can calculate E[Ia,T ] using the

probabilities that we’re in a given state as calculated in the previous section. We have

E[Ia,T ] =

Ia,0∑
j=0

jP(Ia,T = j).

Similarly to the one good newsvendor problem, we consider the probability distribution as

a matrix where the rows indicate the inventory level for product a and the columns represent

the inventory level for product b. We can write this probability distribution matrix as

P(t) =



P0,0(t) P0,1(t) . . . P0,Ib,0(t)

P1,0(t) P1,1(t) . . . P1,Ib,0(t)

...
...

. . .
...

PIa,0,0(t) PIa,0,1(t) . . . PIa,0,Ib,0(t)


.
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We can see that P(Ia,T = j) =
∑Ib,0

k=0 Pn,j,k where Pn,j,k is the corresponding value in the

probability matrix Pj,k(n). So we know

E[Ia,T ] =

Ia,0∑
j=0

j

Ib,0∑
k=0

Pn,j,k. (4.17)

With this we can find the break even price for the inventory option at price

pa = (Ka − Ca,T )E[Ia,T ] = (Ka − Ca,T )

Ia,0∑
j=0

j

Ib,0∑
k=0

Pn,j,k. (4.18)

Since we have assumed that demand is a Poisson process, we can calculate Pn,j,k using

the following transitional probabilities associated with state progression over time:

P(Ia,i+1 = j, Ib,i+1 = k|Ia,i = j, Ib,i = k) = [1− λa,i,j,k∆t+ o(∆t)] ∗ [1− λb,i,j,k∆t+ o(∆t)]

P(Ia,i+1 = j, Ib,i+1 = k|Ia,i = j, Ib,i = k + 1) = [1− λa,i,j,k∆t+ o(∆t)] ∗ [λb,i,j,k∆t+ o(∆t)]

P(Ia,i+1 = j, Ib,i+1 = k|Ia,i = j + 1, Ib,i = k) = [λa,i,j,k∆t+ o(∆t)] ∗ [1− λb,i,j,k∆t+ o(∆t)]

P(Ia,i+1 = j, Ib,i+1 = k|Ia,i = j + 1, Ib,i = k + 1) = [λa,i,j,k∆t+ o(∆t)] ∗ [λb,i,j,k∆t+ o(∆t)]

P(Ia,i+1 = j|Ia,i ≥ j + 2) = o(∆t)

P(Ib,i+1 = k|Ib,i ≥ k + 2) = o(∆t)

Ignoring little-o terms, we can write the probability of having inventory levels (j, k) at time
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i+ 1, written Pi+1,j,k, as a function of Pi+1,j,k, Pi+1,j+1,k, Pi+1,j,k+1, and Pi+1,j+1,k+1 as follows

Pi+1,j,k =



[1− λa,i,j,k∆t+ o(∆t)] ∗ [1− λb,i,j,k∆t+ o(∆t)] ∗ Pi,j,k j = Ia,0, k = Ib,0

[1− λa,i,j,k∆t+ o(∆t)] ∗ [1− λb,i,j,k∆t+ o(∆t)] ∗ Pi,j,k

+ [1− λa,i,j,k+1∆t+ o(∆t)] ∗ [λb,i,j,k+1∆t+ o(∆t)] ∗ Pi,j,k+1 j = Ia,0, 0 < k < Ib,0

[1− λa,i,j,k∆t+ o(∆t)] ∗ [1− λb,i,j,k∆t+ o(∆t)] ∗ Pi,j,k

+ [λa,i,j+1,k∆t+ o(∆t)] ∗ [1− λb,i,j+1,k∆t+ o(∆t)] ∗ Pi,j+1,k 0 ≤ j < Ia,0, k = Ib,0

[1− λa,i,j,k∆t+ o(∆t)] ∗ [1− λb,i,j,k∆t+ o(∆t)] ∗ Pi,j,k

+ [1− λa,i,j,k+1∆t+ o(∆t)] ∗ [λb,i,j,k+1∆t+ o(∆t)] ∗ Pi,j,k+1

+ [λa,i,j+1,k∆t+ o(∆t)] ∗ [1− λb,i,j+1,k∆t+ o(∆t)] ∗ Pi,j+1,k

+ [λa,i,j+1,k+1∆t+ o(∆t)] ∗ [λb,i,j+1,k+1∆t+ o(∆t)] ∗ Pi,j+1,k+1 0 ≤ j < Ia,0, 0 ≤ k < Ib,0

(4.19)

Using the initial probability state

P(0) =

 0 0

0 1

 , (4.20)

we can forward iterate to find all values of Pi,j,k including Pn,j,k. We can now find E[IT ], and

consequently find the break even option price.

Figure 4.9: Inventory probabilities of duopolistic market with substitutes. Assume Ia,0 =
Ib,0 = 3, λ1(p1, p2) = 10 − 5p1 + 3p2, λ2(p1, p2) = 10 + 3p1 − 5p2, Ca,0 = Cb,0 = 4, Ca,T =
Ca,T = 1, Ka = Kb = 2 and T = 4.
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Figure 4.10: Inventory probabilities of a duopolistic market with complementary goods.
Assume Ia,0 = Ib,0 = 3, λ1(p1, p2) = 10− 2p1 − p2, λ2(p1, p2) = 10− p1 − 2p2, Ca,0 = Cb,0 =
3, Ca,T = Ca,T = 2, Ka = Kb = 2, and T = 10.

Figures 4.9 and 4.10, we see the probabilities of being in any given state. In both cases,

there’s an initial inventory level of (3, 3) but as time progresses, the probability of having

inventory levels of (0, 0) increases. Every other inventory state has some increase at the

beginning of the time interval and then drops off as time proceeds. As we’d expect, the more

time we have the inventory on sale, the higher the probability we’ve sold it all.

Given the final inventory probabilities we can now calculate E[IT ] and p (the price of the

inventory option) for both the substitutes and the complements. We obtain E[IT ] = 0.0146

and p = (K − CT )E[IT ] = 0.0146 for the substitutes and E[IT ] = 0.0911 and p = (K −

CT )E[IT ] = 0.0911 for the complements.

Chapter 5. Duopolistic Newsvendor Problem with Collusion

We have found the optimal inventory levels, optimal sale price strategies, the expected profit,

inventory probability progression, and the cross price elasticity of one firm in a two firm mar-

ket. Now we look at the case when the companies collude. When two companies collude,

they team up and try to optimize the total profit of both firms. For example, if there are

only two newsvendors, then they may get together in order to maximize their joint expected
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profit. We could consider the profit function as a total profit from both goods instead of just

examining the profit of an individual company, as we did before, and then split the profits

between the two firms.

Since the total profit function is just the revenues of the whole market minus the total

cost, we essential are looking at a monopolistic market. Because the same results will hold

for a monopolistic market, we will just consider the profit function from the standpoint of

a monopoly. Another application of this would be if there was one company that sold two

different goods or one newsvendor that set up shops in two different places.

Generally when two companies collude, one already has more market power and has

leverage on the other company. Due to this leverage, the profits are not always split 50 : 50.

We set up the total profit function as a function of both goods and note that the negotiations

between the two firms will determine the percentage of profits to each firm.

Again we partition the time interval, [0, T ], into n equal intervals so that T = n∆t and

write the profit and expect profit.

Π =
n−1∑
k=0

[
ua,k,Ia,k,Ib,kS(Ia,k, Da,k) + ub,k,Ia,k,Ib,kS(Ib,k, Db,k)

]
+Ca,T Ia,T + Cb,T Ib,T − Ca,0Ia,0 − Cb,0Ib,0

E[Π] =
n−1∑
k=0

[
ua,k,Ia,k,Ib,kE[S(Ia,k, Da,k)] + ub,k,Ia,k,Ib,kE[S(Ib,k, Db,k)]

]
+Ca,TE[Ia,T ] + Cb,TE[Ib,T ]− Ca,0Ia,0 − Cb,0Ib,0
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We also see that total revenue and remaining revenue functions are given as follows

R =
n−1∑
k=0

[
ua,k,Ia,k,Ib,kS(Ia,k, Da,k) + ub,k,Ia,k,Ib,kS(Ib,k, Db,k)

]
+Ca,T Ia,T + Cb,T Ib,T

R(i∆t) =
n−1∑
k=i

[
ua,k,Ia,k,Ib,kE[S(Ia,k, Da,k)] + ub,k,Ia,k,Ib,kE[S(Ib,k, Db,k)]

]
+Ca,TE[Ia,T ] + Cb,TE[Ib,T ]

Our demand functions for the individual goods are the same as before and given in

Equation 4.2. The sales equation for Sa and Sb are the same as in Equation 4.1 as well as

the state equation for Ia,i+1 and Ib,i+1. Following the same reasoning as above, our expected

remaining revenue is still given in Equation 4.3 by

Ea,i,j,k = E(E[Ra,i,j,k|Da,i, Db,i])

=
∑
c,d≥0

E[Ra,i,j,k|Da,i = c,Db,i = d]P(Da,i = c,Db,i = d)

= E[Ra,i,j,k|Da,i, Db,i = 0]P(Da,i, Db,i = 0)

+E[Ra,i,j,k|Da,i = 0, Db,i = 1]P(Da,i = 0, Db,i = 1)

+E[Ra,i,j,k|Da,i = 1, Db,i = 0]P(Da,i = 1, Db,i = 0) (5.1)

+E[Ra,i,j,k|Da,i, Db,i = 1]P(Da,i, Db,i = 1)

+o(∆t).

But we can now show that the Equations 4.4-4.7 change to

E[Ri,j,k|Da,i = 0, Db,i = 0] = Ea,i+1,j,k (5.2)

E[Ri,j,k|Da,i = 0, Da,i = 1] = ub,i,j,k + Ea,i+1,j,k−1 (5.3)

E[Ri,j,k|Da,i = 1, Da,i = 0] = ua,i,j,k + Ea,i+1,j,k−1 (5.4)

E[Ri,j,k|Da,i = 1, Da,i = 1] = ua,i,j,k + ub,i,j,k + Ea,i+1,j−1,k−1 (5.5)
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Our P (Da,i, Db,i = 0), P (Da,i = 0, Db,i = 1), P (Da,i = 1, Db,i = 0), and P (Da,i, Db,i = 1) are

all given in Equations 4.8-4.11. Substituting Equations 4.8-4.11 and 5.2-5.5 into Equation

5.1 gives us

Ei,j,k = [1− λa,i,j,k∆t] ∗ [1− λb,i,j,k∆t] (Ei+1,j,k)

+ [1− λa,i,j,k∆t] ∗ λb,i,j,k∆t ∗ (ub,i,j,k + Ei+1,j,k−1)

+λa,i,j,k∆t ∗ [1− λb,i,j,k∆t] (ua,i,j,k + Ei+1,j−1,k)

+λa,i,j,k∆t ∗ λb,i,j,k∆t (ua,i,j,k + ub,i,j,k + Ei+1,j−1,k−1)

+o(∆t)

We know that Rn,j,k = jCa,T + kCb,T where n is the number of discrete time intervals.

Find Ei,j,k for all i, j, k by using a dynamical program to iterate backwards from this initial

condition. If j or k is zero, then the corresponding Poisson rate is zero. We can write

λa,i,0,k = 0 and λb,i,j,0 = 0 and get equations for expected remaining revenue when one good

has zero units of inventory left.

Ei,j,0 = [1− λa,i,j,0∆t] ∗ (Ei+1,j,0) + λa,i,j,0∆t ∗ (ua,i,j,0 + Ei+1,j−1,0) + o(∆t)

Ei,0,k = [1− λb,i,0,k∆t] ∗ (Ei+1,0,k) + λb,i,0,k∆t ∗ (ub,i,0,k + Ei+1,0,k−1) + o(∆t)

5.1 Pricing Strategy

To find the optimal price for inventory levels j, k at time i, we take the derivative of the

previous equations with respect to ua,i,j,k and ub,i,j,k, set them equal to zero, take the limit

as ∆t approaches zero and solve for u∗a,i,j,k and u∗b,i,j,k. Through symmetry we can infer that

u∗a,i,j,k and u∗b,i,j,k will be similar.

When k = 0, we assume the price of the other good is equal to its last price which occurs

when there was still a unit of inventory. We do this because there’s no product to sell, so
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it doesn’t make sense to vary it to optimize the problem. We could send the price higher

because having no inventory is the same as sending the price to infinity (it’s impossible to

buy in both cases). For computational simplicity, we set the price of the zero inventory level

good to its ‘previous’ price before selling the last good. So we keep the optimal price of good

a as a function of the price of good b since we’re not varying good b’s price. We find

0 =
∂Ei,j,0
∂ua,i,j,0

= −∂λa,i,j,0
∂ua,i,j,0

∆t ∗ (Ei+1,j,0) +
∂λa,i,j,0
∂ua,i,j,0

∆t ∗ (ua,i,j,0 + Ei+1,j−1,0) + λa,i,j,0∆t

Dividing by ∆t, we get

0 = −∂λa,i,j,0
∂ua,i,j,0

(Ei+1,j,0) +
∂λa,i,j,0
∂ua,i,j,0

(ua,i,j,0 + Ei+1,j−1,0) + λa,i,j,0 (5.6)

Similarly, we get

0 = −∂λb,i,0,k
∂ub,i,0,k

(Ei+1,0,k) +
∂λb,i,0,k
∂ub,i,0,k

(ub,i,0,k + Ei+1,0,k−1) + λb,i,0,k (5.7)

when j = 0.

43



www.manaraa.com

When j, k 6= 0, we take the derivative of Ei,j,k with respect to ua,i,j,k to get the following:

0 =
∂Ei,j,k
∂ua,i,j,k

= −∂λa,i,j,k
∂ua,i,j,k

∆t [1− λb,i,j,k∆t] (Ei+1,j,k)

− [1− λa,i,j,k∆t]
∂λb,i,j,k
∂ua,i,j,k

∆t (Ei+1,j,k)

−∂λa,i,j,k
∂ua,i,j,k

∆t ∗ λb,i,j,k∆t ∗
(
u∗b,i,j,k + Ei+1,j,k−1

)
+ [1− λa,i,j,k∆t] ∗

∂λb,i,j,k
∂ua,i,j,k

∆t ∗
(
u∗b,i,j,k + Ei+1,j,k−1

)
+
∂λa,i,j,k
∂ua,i,j,k

∆t ∗ [1− λb,i,j,k∆t]
(
u∗a,i,j,k + Ei+1,j−1,k

)
−λa,i,j,k∆t ∗

∂λb,i,j,k
∂ua,i,j,k

∆t
(
u∗a,i,j,k + Ei+1,j−1,k

)
+λa,i,j,k∆t ∗ [1− λb,i,j,k∆t]

+
∂λa,i,j,k
∂ua,i,j,k

∆t ∗ λb,i,j,k∆t
(
u∗a,i,j,k + u∗b,i,j,k + Ei+1,j−1,k−1

)
+λa,i,j,k∆t ∗

∂λb,i,j,k
∂ua,i,j,k

∆t
(
u∗a,i,j,k + u∗b,i,j,k + Ei+1,j−1,k−1

)
+λa,i,j,k∆t ∗ λb,i,j,k∆t

Divide by ∆t, take the limit as ∆t→ 0, and simplify to get

0 = −∂λa,i,j,k
∂ua,i,j,k

(Ei+1,j,k)−
∂λb,i,j,k
∂ua,i,j,k

(Ei+1,j,k)

+
∂λb,i,j,k
∂ua,i,j,k

(
u∗b,i,j,k + Ei+1,j,k−1

)
+
∂λa,i,j,k
∂ua,i,j,k

(
u∗a,i,j,k + Ei+1,j−1,k

)
+ λa,i,j,k. (5.8)

A similar equation holds for 0 =
∂Ei,j,k

∂ub,i,j,k
.

5.1.1 Linear Demand. Let the Poisson parameters be linear functions with respect to

the prices.

 λ1(t)

λ2(t)

 =

 a1

a2

−
 b11 b12

b21 b22


 p1(t)

p2(t)


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where b11, b22 > 0. We can now find the optimal pricing strategy for the linear demand case

by substituting in for λa,i,j,0 and
∂λa,i,j,k
∂ua,i,j,k

= −b11 into Equation 5.6.

0 = b11 (Ea,i+1,j,0)− b11

(
u∗a,i,j,0 + Ea,i+1,j−1,0

)
+ a1 − b11u

∗
a,i,j,0 − b12ub,i,j,0

u∗a,i,j,0 =
1

2b11

(a1 + b11(Ea,i+1,j,0 − Ea,i+1,j−1,0)− b12ub,i,j,0)

Similarly, from Equation 5.7, we know

u∗b,i,0,k =
1

2b22

(a2 + b22(Eb,i+1,0,k − Eb,i+1,0,k−1)− b21ua,i,0,k) .

Now substitute λa,i,j,0 and
∂λ′a,i,j,k
∂ua,i,j,k

into Equation 5.8 to get

0 = b11 (Ea,i+1,j,k) + b22 (Ea,i+1,j,k)− b22 (Ea,i+1,j,k−1)− b11

(
u∗a,i,j,k + Ea,i+1,j−1,k

)
+(a1 − b11u

∗
a,i,j,k − b12ub,i,j,k)

u∗a,i,j,k =
1

2b11

(a1 + b11Ea,i+1,j,k + b21Ea,i+1,j,k − b21Ea,i+1,j,k−1 − b11Ea,i+1,j−1,k − b12ub,i,j,k)

By symmetry we can find a similar optimal value for u∗b,i,j,k. Set up the system of equations

and solve for u∗a,i,j,k and u∗b,i,j,k to get

 u∗a,i,j,k

u∗b,i,j,k

 =

 2b11b22 b22(b12 + b21)

b11(b12 + b21) 2b11b22

−1  b22
(
a1 + (b11 + b21)Ea,i+1,j,k − b21Ea,i+1,j,k−1 − b11Ea,i+1,j−1,k

)
b11
(
a2 + (b22 + b12)Eb,i+1,j,k − b12Eb,i+1,j−1,k − b22Eb,i+1,j,k−1

)


whenever j, k 6= 0.

The Figures 5.1 and 5.3 are the graphs of the optimal pricing strategies of a two good

market with linear demand functions. The first graph is when the goods are substitutes

and the second graph shows complementary goods. Figures 5.2 and 5.4. We see the same

patterns as we did in the duopolistic market. That is, the sales price and the expected

remaining revenue decrease as the time period nears the end. The optimal price strategy for

the complementary goods doesn’t dip like it did in the duopolistic market but it would with
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Figure 5.1: Optimal sale prices in a monopolistic market with substitutes. Assume Ia,0 =
Ib,0 = 3, λ1(p1, p2) = 10 − 5p1 + 3p2, λ2(p1, p2) = 10 + 3p1 − 5p2, Ca,0 = Cb,0 = 4, Ca,T =
Ca,T = 2, and T = 4.

Figure 5.2: Expected remaining revenue in a monopolistic market with substitutes. Assume
Ia,0 = Ib,0 = 3, λ1(p1, p2) = 10 − 5p1 + 3p2, λ2(p1, p2) = 10 + 3p1 − 5p2, Ca,0 = Cb,0 =
4, Ca,T = Ca,T = 2, and T = 4.

higher levels of initial inventory.

Figures 5.5 and 5.6 are the graphs of the cross price elasticity of the two different mar-

kets. We observe similar behavior as in the duopolistic market; however, there are small

differences in the duopolistic and monopolistic cases. Because these differences in behavior

are less intuitive and hard to explain, we do not try to explain them but only point them out.
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Figure 5.3: Optimal sale prices in a monopolistic market for complementary goods. Assume
Ia,0 = Ib,0 = 4, λ1(p1, p2) = 10−2p1−p2, λ2(p1, p2) = 10−p1−2p2, Ca,0 = Cb,0 = 3, Ca,T =
Ca,T = 2, and T = 10.

Figure 5.4: Expected remaining revenue in a monopolistic market for complementary goods.
Assume Ia,0 = Ib,0 = 4, λ1(p1, p2) = 10− 2p1 − p2, λ2(p1, p2) = 10− p1 − 2p2, Ca,0 = Cb,0 =
3, Ca,T = Ca,T = 2, and T = 10.

In the substitutes case, the cross price elasticities seem to be more dependent on the other

good than they did in the duopolistic case. We also observe for the complementary goods,

each inventory level’s magnitude for the monopolistic market seems to be greater than that

of the duopolistic market.
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Figure 5.5: Cross price elasticity in a monopolistic market with substitutes. Assume Ia,0 =
Ib,0 = 3, λ1(p1, p2) = 10 − 5p1 + 3p2, λ2(p1, p2) = 10 + 3p1 − 5p2, Ca,0 = Cb,0 = 4, Ca,T =
Ca,T = 2, and T = 4.

Figure 5.6: Cross price elasticity in a monopolistic market for complementary goods. Assume
Ia,0 = Ib,0 = 4, λ1(p1, p2) = 10−2p1−p2, λ2(p1, p2) = 10−p1−2p2, Ca,0 = Cb,0 = 3, Ca,T =
Ca,T = 2, and T = 10.

5.2 Optimal Inventory

Again we desire to find the optimal inventory level that maximizes profits for the firm. Now

that we are considering a monopolistic framework, we look at the optimal inventory level of

both goods instead of our previous approach of finding a Nash Equilibrium.

We solve for the optimal inventory level with the same approach as before. Recall that
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Equation 4.16 gave us the total expected profit as the expected remaining revenue minus the

total costs

E[Πa] = E[Ra]− Ca,0Ia,0.

We use the expected revenue at the initial time, R0,j,k, given a fixed inventory level,

(j, k), from the previous section and we subtract the total cost, Ca,0Ia,0 + Cb,0Ib,0, to find

the expected profit. As in the duopolistic case, we numerically find the optimal inventory

levels by plotting the expected profits over the initial inventory levels. Figures 5.7 and 5.8

are graphs of the expected profits over the initial inventory levels for product a.

Figure 5.7: Optimal initial inventory in a monopolistic market for substitutes. Assume
Ia,0 = Ib,0 = 3, λ1(p1, p2) = 10 − 5p1 + 3p2, λ2(p1, p2) = 10 + 3p1 − 5p2, Ca,0 = Cb,0 =
4, Ca,T = Ca,T = 2, and T = 4.

We see that the optimal initial inventory for both the substitutes and the complements

are both (3, 3) in both the duopolistic market and the monopolistic market. This is an inter-

esting phenomenon because generally we’d expected the number of units sold to decrease in

the monopolistic case. But in both these cases, the monopolistic produces the same amount

of initial inventory as the duopolistic cases.

Another thing we notice is that for the substitutes, the expected profit for the monop-

olistic market is much higher than the sum of the profits for both firms in the duopolistic

market. In fact we see a combined total of about 1.6 units of profit in the duopolistic case
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Figure 5.8: Optimal initial inventory in a monopolistic market for complementary goods.
Assume Ia,0 = Ib,0 = 4, λ1(p1, p2) = 10− 2p1 − p2, λ2(p1, p2) = 10− p1 − 2p2, Ca,0 = Cb,0 =
3, Ca,T = Ca,T = 2, and T = 10.

and nearly 2.25 units of profit in the monopolistic case. We expected to see this because tra-

ditional economics teaches us that monopolies always have significantly higher profits than

the combined profits of the oligopolistic firms.

The interesting thing is that this is not the case for the complementary goods. Although

the monopolistic firms gains slightly higher profits than the combined duopolistic firms’

profits, it is not nearly as significant as the gain in profits in the substitutes case. The

combined total profits in the duopolistic market is roughly 0.75 units; whereas, the profits

in the monopolistic market are around 0.80.

5.3 Inventory Probabilities

The only difference in calculating the inventory probabilities in the duopolistic case and the

monopolistic case is the difference in λa,i,j,k and λb,i,j,k. However, these values are all calcu-

lated while finding the optimal sale price strategies and the expected remaining revenues.

So once again we can calculate the inventory probabilities using the initial probability state

given in Equation 4.20 and the probability update formula in Equation 4.19.
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Figure 5.9: Inventory probabilities in a monopolistic market with substitutes. Assume Ia,0 =
Ib,0 = 3, λ1(p1, p2) = 10 − 5p1 + 3p2, λ2(p1, p2) = 10 + 3p1 − 5p2, Ca,0 = Cb,0 = 4, Ca,T =
Ca,T = 1, Ka = Kb = 2, and T = 4.

Figure 5.10: Inventory probabilities in a monopolistic market with complementary goods.
Assume Ia,0 = Ib,0 = 3, λ1(p1, p2) = 10− 2p1 − p2, λ2(p1, p2) = 10− p1 − 2p2, Ca,0 = Cb,0 =
3, Ca,T = Ca,T = 1, Ka = Kb = 2, and T = 10.

We once again find progress of the inventory probabilities and graph them in Figures 5.9

and 5.10. We use the results to find the expected remaining inventory for each good and the

corresponding option price as given in Equations 4.17 and 4.18. We find that in our substitute

case, we have E[Ia,T ] = E[Ib,T ] = 0.04534 and the option price is pa = pb = 0.04534; whereas

in our complementary goods case, we have E[Ia,T ] = E[Ib,T ] = 0.07303 and the option price

is pa = pb = 0.07303.
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Chapter 6. Differentiated Goods

Until now, we have only considered homogeneous goods. That is to say that the demand

function is identical for both firms. We would, however, like to know what would happen in

the case of heterogeneous goods or differentiated goods. In the context of the newsvendor

problem, this could arise if there are two different qualities of newspapers. For example,

we could consider a duopolistic market comprised of the sales of a renowned paper such as

the New York Times in comparison to a community paper. Clearly we’d expect the better

known paper to have a higher sales price but we don’t know about the relationship of the

demand between them. For example, the New York Times might sell more in most cities

than the local paper but maybe in some communities, the local paper is in higher demand

than the New York Times.

We might also consider a monopolistic market such as the sales of two different auto-

mobiles made by the same company. For example we could consider the sales of a Toyota

Corolla versus a Lexus IS (both owned by Toyota). Clearly a Lexus is a more expensive car

but Toyota Corolla’s sell much more quantity than the Lexus IS’s do. A business may want

to know how to price the two goods in order to capture the maximum possible profits.

We will examine the monopolistic and duopolistic cases of differentiated goods both

substitutes and complements, noting that the monopolistic cases encompasses collusion in a

duopolistic market. We will first start by separating into the substitutes and complements

cases. We will then subdivide each of those sections into the monopolistic and duopolistic

cases.
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6.1 Substitutes

We first examine what happens when the goods are substitutes. Say the demand of the

goods are random variables modeled with Poisson processes, the goods are substitutes, and

assume the demand for the Poisson rates is linear and given by the system of equations below

 λ1(t)

λ2(t)

 =

 15

20

−
 4 −1

−2 7


 p1(t)

p2(t)

 .
Let the initial and salvage costs of the goods be Ca,0 = 3.5, Cb,0 = 1, Ca,T = 2, and Cb,T = 0.5.

Consider first a duopolistic model and then a monopolistic model.

6.1.1 Duopolistic. Consider a duopolistic market with two different firms exclusively

selling their respective goods. We first plot the expected profit in order to find the Nash

equilibrium for initial inventory levels.

Figure 6.1: Expected profit of firm one in a duopolistic market with differentiated, com-
plementary goods. Let λ1(p1, p2) = 15 − 4p1 + 1p2, λ2(p1, p2) = 10 + 2p1 − 7p2, Ca,0 = 3.5,
Cb,0 = 1, Ca,T = 2, and Cb,T = 0.5, and T = 3.

In Figure 6.1, it shows that whenever firm b starts with less than 15 units of inventory,

firm a’s optimal initial inventory is three units. Figure 6.2 suggests that whenever firm a has

three units of inventory, firm b maximizes optimal profit at initial inventory level of 9. So

the Nash Equilibrium is found at (Ia,0, Ib,0) = (3, 9). We now use previous techniques to find
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Figure 6.2: Expected profit of firm two in a duopolistic market with differentiated, com-
plementary goods. Let λ1(p1, p2) = 15 − 4p1 + 1p2, λ2(p1, p2) = 10 + 2p1 − 7p2, Ca,0 = 3.5,
Cb,0 = 1, Ca,T = 2, and Cb,T = 0.5, and T = 3.

the optimal sales price strategies, the cross price elasticities, and the expected remaining

revenues for both firms, a and b. Since the progression of the inventory probabilities looks

similar to our other examples, we omit it from now on.

Figure 6.3: Optimal sales price strategy of firm one in a duopolistic market with differenti-
ated, substitutes. Let λ1(p1, p2) = 15 − 4p1 + 1p2, λ2(p1, p2) = 10 + 2p1 − 7p2, Ca,0 = 3.5,
Cb,0 = 1, Ca,T = 2, and Cb,T = 0.5, and T = 3.

Figures 6.3-6.8 are similar to what we’d expect and have seen in previous examples. The

only thing we wish to point out is the effect of the market leverage between the two goods.

We have set the market up so that good a will have more leverage than good b. This is seen

in the price coefficients, b12 and b21, in the demand function. The effects of the difference
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Figure 6.4: Optimal sales price strategy of firm two in a duopolistic market with differen-
tiated, substitutes. Let λ1(p1, p2) = 15− 4p1 + 1p2, λ2(p1, p2) = 10 + 2p1 − 7p2, Ca,0 = 3.5,
Cb,0 = 1, Ca,T = 2, and Cb,T = 0.5, and T = 3.

Figure 6.5: Cross price elasticities of good a in a duopolistic market with differentiated,
substitutes. Let λ1(p1, p2) = 15− 4p1 + 1p2, λ2(p1, p2) = 10 + 2p1− 7p2, Ca,0 = 3.5, Cb,0 = 1,
Ca,T = 2, and Cb,T = 0.5, and T = 3.

in market leverage between the two goods is seen in the pricing strategies, the expected

remaining revenue, and the cross price elasticity.

The sales price of the second good, firm b, depend much more on the prices of firm a. We

can see this in Figures 6.3 and 6.4 because the sales price of good a is clumped together in

groups of inventory levels of (1, ·), (2, ·), and (3, ·). On the other hand, the sales prices of good

b isn’t clumped together in such a manner and this is due to the disparity in market leverage.
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Figure 6.6: Cross price elasticitiies of good b in a duopolistic market with differentiated,
substitutes. Let λ1(p1, p2) = 15− 4p1 + 1p2, λ2(p1, p2) = 10 + 2p1− 7p2, Ca,0 = 3.5, Cb,0 = 1,
Ca,T = 2, and Cb,T = 0.5, and T = 3.

Figure 6.7: Expected remaining revenue of firm one in a duopolistic market with differen-
tiated, complementary goods. Let λ1(p1, p2) = 15 − 4p1 + 1p2, λ2(p1, p2) = 10 + 2p1 − 7p2,
Ca,0 = 3.5, Cb,0 = 1, Ca,T = 2, and Cb,T = 0.5, and T = 3.

We plot the two goods’ cross price elasticities in Figures 6.5 and 6.5 because they are

different now that we are examining differentiated goods. We see a negative correlation

between the magnitude of cross price elasticity and market leverage. In other words, good b

has higher cross price elasticity but has less market leverage.

The expected remaining revenue of firm b drops off faster than the expected remaining
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Figure 6.8: Expected remaining revenue of firm two in a duopolistic market with differen-
tiated, complementary goods. Let λ1(p1, p2) = 15 − 4p1 + 1p2, λ2(p1, p2) = 10 + 2p1 − 7p2,
Ca,0 = 3.5, Cb,0 = 1, Ca,T = 2, and Cb,T = 0.5, and T = 3.

revenue of firm a, as seen in Figures 6.7 and 6.8. This is in part due to the fact that there

is more inventory for firm b so the firm must dump inventory sooner. However, we also

attribute less market leverage to the decrease in expected remaining revenue of good b.

6.1.2 Monopolistic. Now consider the same demand structure in the monopolistic mar-

ket. We first plot the expected profit in order to find the optimal initial inventory levels.

Figure 6.9: Expected profit in a monopolistic market with differentiated, substitutes. Let
λ1(p1, p2) = 15− 4p1 + 1p2, λ2(p1, p2) = 10 + 2p1 − 7p2, Ca,0 = 3.5, Cb,0 = 1, Ca,T = 2, and
Cb,T = 0.5, and T = 3.

In Figure 6.9, we see that the firms maximum profit is near 2.83 when the inventory levels
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are at (Ia,0, Ib,0) = (2, 9). The combined total profit between the two firms in the duopolistic

case were roughly 3.2, over 0.65 from firm a and about 2.5 from firm b. Again we see that a

monopolistic market doesn’t necessarily guarantee higher joint profits.

Given the optimal initial inventory levels, we can find the optimal sales price strategies,

the cross price elasticities, the expected remaining revenues, and the progression of the inven-

tory probabilities. We omit the expected remaining revenue and the inventory probabilities

graphs as we don’t gain any new insights from them.

Figure 6.10: Optimal sales price strategy in a monopolistic market with differentiated,
substitutes. Let λ1(p1, p2) = 15− 4p1 + 1p2, λ2(p1, p2) = 10 + 2p1− 7p2, Ca,0 = 3.5, Cb,0 = 1,
Ca,T = 2, and Cb,T = 0.5, and T = 3.

Although the total profit is less in the monopolistic case, we see in Figures 6.10 and

6.11 that the optimal sales prices of the two goods are higher than in the duopolistic case.

This is what we’d expect but we’d also expect higher profits as a whole. We will show in

the complementary goods case that it is possible for the monopoly to charge less than the

duopolistic firms.
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Figure 6.11: Optimal sales price strategy in a monopolistic market with differentiated,
substitutes. Let λ1(p1, p2) = 15− 4p1 + 1p2, λ2(p1, p2) = 10 + 2p1− 7p2, Ca,0 = 3.5, Cb,0 = 1,
Ca,T = 2, and Cb,T = 0.5, and T = 3.

Figure 6.12: Cross price elasticity in a monopolistic market with differentiated, substitutes.
Let λ1(p1, p2) = 15− 4p1 + 1p2, λ2(p1, p2) = 10 + 2p1 − 7p2, Ca,0 = 3.5, Cb,0 = 1, Ca,T = 2,
and Cb,T = 0.5, and T = 3.

6.2 Complements

We now examine what happens when the goods are complements. Again let the demand of

the goods be random variables modeled with Poisson processes. The goods are complements

and assume the demand for the Poisson rates is linear and given by the system of equations
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below  λ1(t)

λ2(t)

 =

 15

20

−
 3 1

2 7


 p1(t)

p2(t)

 .
Let the initial and salvage costs of the goods be Ca,0 = 3, Cb,0 = 1, Ca,T = 2, and Cb,T = 0.5.

Consider first a duopolistic model and then a monopolistic model.

6.2.1 Duopolistic. First consider a duopolistic market with two different firms the re-

spective goods. Plot the expected profit to find the Nash equilibrium for initial inventory

levels.

Figure 6.13: Expected profit of firm one in a duopolistic market with differentiated, com-
plementary goods. Let λ1(p1, p2) = 15 − 3p1 − 1p2, λ2(p1, p2) = 20 − 2p1 − 7p2, Ca,0 = 3,
Cb,0 = 1, Ca,T = 2, and Cb,T = 0.5, and T = 3.

In Figure 6.13, it shows that whenever firm b starts with less than 20 units of inventory,

firm a’s optimal initial inventory is six units. Figure 6.14 suggests that whenever firm a has

six units of inventory, firm b maximizes optimal profit at initial inventory level of 13. So the

Nash Equilibrium is found at (Ia,0, Ib,0) = (6, 13). At the Nash Equilibrium, firm a has a

profit of just under 3.56 and firm b has a profit of just under 6.33. So they have a combined

total profit of about 9.89. Now use the previous techniques to find the optimal sales price

strategies, the cross price elasticities, and the expected remaining revenues for both firms, a
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Figure 6.14: Expected profit of firm two in a duopolistic market with differentiated, com-
plementary goods. Let λ1(p1, p2) = 15 − 3p1 − 1p2, λ2(p1, p2) = 20 − 2p1 − 7p2, Ca,0 = 3,
Cb,0 = 1, Ca,T = 2, and Cb,T = 0.5, and T = 3.

and b.

Figure 6.15: Optimal sales price strategy of firm one in a duopolistic market with differen-
tiated, complementary goods. Let λ1(p1, p2) = 15 − 3p1 − 1p2, λ2(p1, p2) = 20 − 2p1 − 7p2,
Ca,0 = 3, Cb,0 = 1, Ca,T = 2, and Cb,T = 0.5, and T = 3.

In Figures 6.15-6.19, the color lines correspond to the inventory levels of the correspond-

ing firm as the levels of inventory of the other firm change.

Note again that the sales price of the second good, firm b, depend much more on the

prices of firm a. Also see that sales price dips below the final sales price. This phenomenon

happened in our previous complementary goods examples but is especially noticeable in Fig-
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Figure 6.16: Optimal sales price strategy of firm two in a duopolistic market with differen-
tiated, complementary goods. Let λ1(p1, p2) = 15 − 3p1 − 1p2, λ2(p1, p2) = 20 − 2p1 − 7p2,
Ca,0 = 3, Cb,0 = 1, Ca,T = 2, and Cb,T = 0.5, and T = 3.

Figure 6.17: Cross price elasticities in a duopolistic market with differentiated, complemen-
tary goods. Let λ1(p1, p2) = 15− 3p1 − 1p2, λ2(p1, p2) = 20− 2p1 − 7p2, Ca,0 = 3, Cb,0 = 1,
Ca,T = 2, and Cb,T = 0.5, and T = 3.

ure 6.19, the sales price for firm b.
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Figure 6.18: Expected remaining revenue of firm one in a duopolistic market with differen-
tiated, complementary goods. Let λ1(p1, p2) = 15 − 3p1 − 1p2, λ2(p1, p2) = 20 − 2p1 − 7p2,
Ca,0 = 3, Cb,0 = 1, Ca,T = 2, and Cb,T = 0.5, and T = 3.

Figure 6.19: Expected remaining revenue of firm two in a duopolistic market with differen-
tiated, complementary goods. Let λ1(p1, p2) = 15 − 3p1 − 1p2, λ2(p1, p2) = 20 − 2p1 − 7p2,
Ca,0 = 3, Cb,0 = 1, Ca,T = 2, and Cb,T = 0.5, and T = 3.

6.2.2 Monopolistic. Now consider a monopolistic market with the same two goods.

The expected profit is given in Figure 6.20 and shows that the optimal initial inventory level

is (Ia,0, Ib,0) = (7, 15). At the optimal initial inventory levels, the expected profit is just over

9.95. Generally we expect a monopoly to make a significantly more amount of money than

a duopolistic market. It is interesting that this is only 0.06 above the combined profit for

the duopolistic case; the expect profits of the two firms in the duopolistic case summed to

roughly 9.89. This goes against our conventional wisdom but it makes sense because of the
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cross price elasticity between the two goods. Because the goods are complements, we see that

monopoly doesn’t price gouge because otherwise, they wouldn’t be able to much inventory.

Again this reaffirms that the monopolistic’s expected profit is not necessarily significantly

larger than the combined profit in the duopolistic case. Now find the optimal sales price

strategies and the cross price elasticities starting at the optimal initial inventory values.

Figure 6.20: Expected profit of firm one in a monopolistic market with differentiated,
complementary goods. Let λ1(p1, p2) = 15− 3p1− 1p2, λ2(p1, p2) = 20− 2p1− 7p2, Ca,0 = 3,
Cb,0 = 1, Ca,T = 2, and Cb,T = 0.5, and T = 3.

Figure 6.21: Optimal sales price strategy of firm one in a monopolistic market with differ-
entiated, complementary goods. Let λ1(p1, p2) = 15− 3p1− 1p2, λ2(p1, p2) = 20− 2p1− 7p2,
Ca,0 = 3, Cb,0 = 1, Ca,T = 2, and Cb,T = 0.5, and T = 3.

The interesting phenomenon, is that both sales prices of good a and b are both lower

in the monopolistic case than in the duopolistic, as seen in Figures 6.15-6.16 and 6.21-6.22.
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Figure 6.22: Optimal sales price strategy of firm two in a monopolistic market with differ-
entiated, complementary goods. Let λ1(p1, p2) = 15− 3p1− 1p2, λ2(p1, p2) = 20− 2p1− 7p2,
Ca,0 = 3, Cb,0 = 1, Ca,T = 2, and Cb,T = 0.5, and T = 3.

Figure 6.23: Cross price elasticities in a monopolistic market with differentiated, comple-
mentary goods. Let λ1(p1, p2) = 15 − 3p1 − 1p2, λ2(p1, p2) = 20 − 2p1 − 7p2, Ca,0 = 3,
Cb,0 = 1, Ca,T = 2, and Cb,T = 0.5, and T = 3.

This is interesting because classical economic models tell us that monopolies always carry

heavier prices, but this is not the case here. Because the goods are complements, the firm

has incentive to keep the prices of one good low in order to sell the other good, regardless

if the first good is low on inventory. Also Figures 6.17 and 6.23 show that the magnitudes

of the cross price elasticity of demand for the monopolistic model are less than those of the

duopolistic model. This is interesting and is most likely due to the fact that the monopoly

has lower prices.
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Chapter 7. Conclusions

Although the Bertrand model has been accepted for over one hundred years, there are some

disadvantages to the model. Amongst others, the most poignant is that the Bertrand model

is a deterministic model. We wanted to propose a model that was a probabilistic model for

demand and one that allowed price to be above marginal cost. Using Poisson distributions

as arrival rates for demand, we accomplished both goals by creating a probabilistic model

that more accurately modeled the pricing behavior of retailers in oligopolistic markets on

finite time horizons.

Throughout the several market structures we explored, we found several interesting phe-

nomena worth noting, some harder to explain than others. First off, as a rule of thumb,

we noticed that as time nears the expiration time, prices tend to go down in an attempt to

dump inventory; however, when the goods were complements, we noticed that the optimal

sales price can indeed drop below the optimal price at expiration. This causes the optimal

price to increase on some subinterval during the whole time interval. This only happened

when a good had significantly more units of inventory in comparison to the other good. This

behavior was caused because the prices of the low inventory good went relatively high as

they had low inventory, which caused the demand for the high inventory good to plummet

causing the corresponding good to dramatically drop the prices in an attempt to sell some

inventory. As the expiration time approached and the low inventory firm started to drop

its price, the demand for the high inventory good started to rise again so it could increase

its prices. Note that this only happened because the goods were complements and did not

happen when the goods were substitutes.

Another phenomenon we observed was the progression of the cross price elasticities be-

tween goods. It was first seen in Section 4.2 but was probably best seen in Section 6. We

saw that at the beginning of the time period, the magnitude of the cross price elasticity was
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high and decreased as time continued. This is due to the fact that at the beginning of the

sales period, the prices are usually at their highest which causes the demand for both goods

to be at their lowest. If we recall the equation for cross price elasticity, Ea,b = ∂λa
∂Pb
∗ Pb

λa
, it is

clear that this causes the magnitude to be greatest at the beginning of the sales period.

In Section 4.3, we also saw that when goods are substitutes, they have higher expected

profits when their competitor has less inventory; whereas when the goods are complements,

the firms have higher expected profits when their competitor has more inventory. Since less

inventory is synonymous with higher prices, this makes sense. As competitors have higher

prices, substitutes perform better. However, when goods are complements, they perform

better when their competitors have lower prices, or in other words, their competitors have

high inventory.

The next three phenomena deal with the behavior of monopolies. First it was shown

that the optimal initial inventory levels for monopolies aren’t always less than that of the

corresponding duopolies in the same market structure, contrary to what we’d expect. This

was first shown in Section 5.2 where the optimal initial inventory levels for both substitutes

and complements were the same and later shown in Section 6.1 where the monopoly’s initial

inventory levels were higher than those of the duopolies given the same market structure

and complementary goods.

Generally we’d expect that a monopoly will have much higher expected profits than the

combined total expected profits of the two duopolies in a market. We found that this wasn’t

always the case. In the homogeneous goods market (Section 5.2), we found that when the

goods were substitutes, the total expected profits went roughly from 1.6 to 2.25 (over 40% in-

crease) as the market changed from a duopolistic market to a monopolistic market; however,

when the goods were complements, the total expected profits only went from around 0.75 to
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0.8 (a 6.67% gain). Still a gain but not nearly as significant. In Sections 6.1 (differentiated

substitutes), the total expected profits decreased from 3.2 to 2.83 (over 11% decrease) as

the market switched from a duopoly to a monopoly. Whereas in Section 6.2 (differentiated

complements), the total expected profits slightly increased from 9.89 to 9.95 (less than a 1%

gain) with the switch.

We also expect the price of goods to increase in the presence of a monopoly. However

that was not the case in Section 6.2 when the goods were differentiated complements. The

sales prices of the monopoly were actually sightly lower than the prices of the duopolies.

This happens because the monopoly has incentives to keep the price of one good low in

order to keep demand for the other good high. So there’s a relationship between prices and

demand that keeps both prices low. This doesn’t happen when the goods are substitutes

because raising the price of one good will increase the demand for the other, which would

be beneficial for the monopoly.

When the two goods are differentiated, there is also a disparity in the leverage the two

firms have in the market as seen in Section 6. The differences in market leverage causes

there to be imbalances in the market. There are several effects of the market imbalances

seen in the behavior of the pricing strategies, the cross price elasticities, and the expected

remaining revenue.
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